Vorab:

- a) Lade die GeoGebra-Datei von http://www.web-sue.de/ (Klasse 9, Mathematik) herunter, entpacke sie und öffne sie mit GeoGebra.
- b) Du siehst zwei veränderbare rechtwinklige Dreiecke. Die hellblauen Punkte sind verschiebbar.
 - 1. Beim linken Dreieck kannst Du die Punkte A und B verschieben und somit den Winkel α ändern.
 - 2. Beim rechten Dreieck kannst Du den Punkt B' auf einem Viertelkreis mit Radius 1 verschieben und so den Winkel α verändern.
- c) Verschiebe zur Übung die Punkte A, B und B' und beobachte die Veränderungen der Dreieckswerte im linken Fenster.
- 1. Aufgabe: Fülle die folgende Wertetabelle aus. Runde dabei auf vier Nachkommastellen.

α	$\sin \alpha = a : c$	$\cos \alpha = b : c$	
10°			
20°			
30°			
40°			
50°			
60°			
70°			
80°			

2. Aufgabe:

- a) Warum kannst Du beim rechten Dreieck die Sinus- und Kosinuswerte von α direkt ablesen?
- b) Vervollständige den folgenden Satz:

Der Sinus von α (0° < α < 90°) nimmt nur Werte zwischen __ und __ an. Was gilt für den Kosinus von α ? Begründe Deine Aussagen mit Hilfe der Eigenschaft der Hypotenuse.

c) Vergrößert sich der Winkel von α , so vergrößert sich der Sinus von α und verkleinert sich der Kosinus von α . Bei welchem Winkel α stimmen Sinus und Kosinus von α überein?

3. Aufgabe:

Informiere Dich auf der Seite 50 Deines Mathematikbuchs über die allgemeine Beschreibung des Sinus, des Kosinus und des Tangens eines Winkels (roter Kasten).

- a) Trage die Gradzahlen von β in der dritten Spalte der obigen Tabelle ein. In welcher der ersten beiden Spalten stehen die Werte für den Sinus von β und für den Kosinus von β ? Trage sin β und cos β in den Kopfzeilen ein.
- b) Berechne den Tangens von α in der vierten Spalte der obigen Tabelle. Welche Werte kann der Tangens von α annehmen? (Überschrift: tan $\alpha=a$: b)

4. Aufgabe:

Beschreibe, wie der Sinus, der Kosinus und der Tangens die Berechnung der unbekannten Größe in einem rechtwinkligen Dreieck ermöglicht.

Auf einem karierten Zettel: Denke Dir dazu Beispielaufgaben aus und beschreibe die Lösungswege.